If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=18Y-Y^2
We move all terms to the left:
-(18Y-Y^2)=0
We get rid of parentheses
Y^2-18Y=0
a = 1; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·1·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*1}=\frac{0}{2} =0 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*1}=\frac{36}{2} =18 $
| 3=9n×-1 | | -3*5+2y=-14 | | -3*5+2y=-14. | | 3(4+x-2)=15 | | -3*6+2y=-14 | | -2x+3=-9. | | -2x+-4=-9 | | -2-x+-4=-9 | | -3*2+2y=-14 | | x=3*5-18 | | 3(y-2)=6y-1-3y | | -5(3y-18)+3y=30 | | -6=8x-8 | | 2=-4-6n | | 2x+3x+4=9 | | -3=m+7 | | 13g-12g-1=10 | | B-b+5b=20 | | 5j-4j=8 | | 7b-4b-b+1=15 | | 4a-3a=9 | | 3s+1=-1 | | 2x-3/4=x+6/3 | | 8r+-16r=16 | | 4(v-18)=-4 | | -8v+7v=-15 | | 12m-10m+9=-19 | | 3a/2+5=-1 | | 4z-3z=-14 | | 7x-x-6=18 | | 2/x-1/x+1=-2/5x+5 | | -5-k-13=k |